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Linkage Disequilbrium to Linkage Disequilbrium to 
Genomic SelectionGenomic Selection



Course overview

• Day 1
– Linkage disequilibrium in animal and plant genomes

• Day 2
– QTL mapping with LD

• Day 3 
– Marker assisted selection using LD

• Day 4 
– Genomic selection

• Day 5
– Genomic selection continued



Mapping QTL using LD

• Association testing with single marker 
regression

• Accounting for population structure
• LD mapping with haplotypes 
• The Identical by descent (IBD) 

approach
• Combined linkage-linkage 

disequilibrium mapping



Mapping QTL with LD

• LD mapping of QTL exploits population level associations 
between markers and QTL.  
– Associations arise because there are small segments of 

chromosome in the current population which are descended 
from the same common ancestor

– These chromosome segments, which trace back to the same 
common ancestor without intervening recombination, will carry 
identical marker alleles or marker haplotypes

– If there is a QTL somewhere within the chromosome segment, 
they will also carry identical QTL alleles

• The simplest mapping strategy to exploit LD is a  genome 
wide association test using single marker regression.



Single marker regression

• Association between a marker and a trait can be 
tested with the model

• Where 
– y is a vector of phenotypes
– 1n is a vector of 1s allocating the mean to phenotype, 
– X is a design matrix allocating records to the marker 

effect, 
– g is the effect of the marker 
– e is a vector of random deviates ~ N(0,σe

2

• Underlying assumption here is that the marker will 
only affect the trait if it is in linkage disequilibrium 
with an unobserved QTL. 

eXμ1y n ++= g



Single marker regression

• A small example
Animal Phenotpe SNP allele 1 SNP allele 

1 2.030502 1 1 

2 3.542274 1 2 

3 3.834241 1 2 

4 4.871137 2 2 

5 3.407128 1 2 

6 2.335734 1 1 

7 2.646192 1 1 

8 3.762855 1 2 

9 3.689349 1 2 

10 3.685757 1 2 

 



Single marker regression

• The design vector 1n allocates phenotypes to the mean

Animal 1n 
X, Number of “2” 

alleles  

1 1 0 

2 1 1 

3 1 1 

4 1 2 

5 1 1 

6 1 0 

7 1 0 

8 1 1 
9 1 1 

10 1 1 

 

Animal Phenotpe SNP allele 1 SNP allele 

1 2.030502 1 1 

2 3.542274 1 2 

3 3.834241 1 2 

4 4.871137 2 2 

5 3.407128 1 2 

6 2.335734 1 1 

7 2.646192 1 1 

8 3.762855 1 2 

9 3.689349 1 2 

10 3.685757 1 2 

 



Single marker regression

• The design vector 1n allocates phenotypes to the mean

• The design vector X allocates phenotypes to genotypes
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Single marker regression

• The design vector 1n allocates phenotypes to the mean

• The design vector X allocates phenotypes to genotypes

Animal 1n 
X, Number of “2” 

alleles  

1 1 0 

2 1 1 

3 1 1 

4 1 2 

5 1 1 

6 1 0 

7 1 0 

8 1 1 
9 1 1 

10 1 1 

 

Animal Phenotpe SNP allele 1 SNP allele 

1 2.030502 1 1 

2 3.542274 1 2 

3 3.834241 1 2 

4 4.871137 2 2 

5 3.407128 1 2 

6 2.335734 1 1 

7 2.646192 1 1 

8 3.762855 1 2 

9 3.689349 1 2 

10 3.685757 1 2 

 y vector



Single marker regression

• Estimate the marker effect and the 
mean as:
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Single marker regression
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Single marker regression
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Single marker regression
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Single marker regression
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Single marker regression

• Estimates of the mean and marker 
effect are:

• In the “simulation”, mean was 2, r2

between QTL and marker was 1, and 
effect of 2 allele at QTL was 1.
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Single marker regression

• Is the marker effect significant?
• F statistic comparing between 

marker variance to within marker 
variance

• Test against tabulated value for 
Fα,v1,v2

– α= significance value
–v1=1 (1 marker effect for 

regression)
–v2=9 (number of records -1) 



Single marker regression

• In our simple example
–Fdata=4.56
–F0.05,1,9=5.12 

• Not significant



Results of genome scans with dense SNP panels
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Experiment

384 Holstein-Friesian dairy bulls selected from Australian 
dairy bull population
genotyped for 10 000 SNPs
Single marker regression with protein%



Single marker regression

• What is the power of an association 
test with a certain number of records 
to detect a QTL?

• Power is probability of correctly 
rejecting null hypothesis when a QTL of 
really does exist in the population

• How many animals do we need to 
genotype and phenotype?



Single marker regression

• Power is a function of:
– r2 between the marker and QTL

• sample size must be increased by 1/r2 to detect an 
un-genotyped QTL, compared with sample size for 
testing QTL itself

– Proportion of total phenotypic variance explained 
by the QTL

– Number of phenotypic records 
– Allele frequency of the rare allele of SNP

• determines the minimum number of records used to 
estimate an allele effect.  

• The power becomes particular sensitive with very 
low frequencies (eg. <0.1).

– The significance level α set by the experimenter



Single marker regression

• Power is a function of:
– r2 between the marker and QTL

• sample size must be increased by 1/r2 to detect an 
un-genotyped QTL, compared with sample size for 
testing QTL itself

– Proportion of total phenotypic variance explained 
by the QTL

– Number of phenotypic records 



Single marker regression
• Power to detect a QTL explaining 5% of the 

phenotypic variance, 1000 phenotypic 
records
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Single marker regression

• Power to detect a QTL explaining 
5% of the phenotypic variance
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Single marker regression

• Power to detect a QTL explaining 
2.5% of the phenotypic variance
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Single marker regression

• r2 of at least 0.2 is required to achieve power ≥ 0.8 
to detect a QTL of hQTL=0.05 with 1000 phenotypic 
records.  

• In dairy cattle, r2 ≈ 0.2 at 100kb.  
• Assuming a genome length of 3000Mb in cattle, we 

would need at least 15 000 markers to ensure there 
is a marker 100kb from every QTL.  

• Assumes markers are evenly spaced, all have rare 
allele frequency > 0.2.  

• In practise, markers not be evenly spaced, rare allele 
frequency of some markers below 0.2.  

• At least 30 000 markers required. 



Single marker regression

• Another illustration of effect of r2 on power
• An experiment to assess power of whole 

genome association scans in outbred 
livestock with commercially available SNP 
panels

– 384 Angus cattle genotyped for 10,000 SNPs
– QTL, polygenic and environmental effects were 

simulated for each animal
– QTL simulated on genotyped SNPs chosen at 

random.  
– There was a strong correlation between F-value of 

significant SNPs and their r2 with the “QTL”



Single marker regression



Single marker regression

• What significance level to use?
– P<0.01, P<0.001?

• We have a horrible multiple testing 
problem

– Eg. If test 10 000 SNP at P<0.01 expect 
100 significant results just by chance?

• Could just correct for the number of 
tests

– But is too stringent, ignores the fact that 
tests are on the same chromosome (eg
not independent) 



Single marker regression

• Could use a technique called 
permutation testing

– Randomly shuffle phenotypes across 
genotypes

– Test all SNPs (null hypothesis), get 
largest F value

– Repeat 1000 times
– 950th value is P<0.05 level corrected for 

multiple testing

• Difficult with pedigree structure 



Single marker regression

• An alternative is to choose a significance level with 
an acceptable false discovery rate (FDR)

• Proportion of significant results which are really false 
positives

• FDR = mP/n
– m = number of markers tested
– P = significance level (eg. P=0.01)
– n = number of markers tested



Single marker regression

• An alternative is to choose a significance level with 
an acceptable false discovery rate (FDR)

• Proportion of significant results which are really false 
positives

• FDR = mP/n
– m = number of markers tested
– P = significance level (eg. P=0.01)
– n = number of markers tested

• Example 
– 10 000 markers tested at P<0.001, and 20 significant.  

What is FDR?
– FDR=10000*0.001/20 = 50%
– Eg. 50% of our significant results are actually false 

positives   



Single marker regression
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Single marker regression
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Single marker regression

• Confidence regions
– Following a genome wide association 

study, how do we decide the 95% 
confidence interval for the true QTL 
location?

• How many candidate genes to 
investigate?
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Confidence intervals
• One method to calculate confidence intervals

– Count up number of “clusters”=n
– Split data set into two at random (eg. half animals 

in one set, other half in other set)
– Designate best SNP at a cluster location in data set 

1 and data set 2 as x1i,x2i.
– Estimate standard error of position over best SNP 

as: 
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Confidence intervals
• One method to calculate confidence intervals

– Count up number of “clusters”=n
– Split data set into two at random (eg. half animals 

in one set, other half in other set)
– Designate best SNP at a cluster location in data set 

1 and data set 2 as x1i,x2i.
– Estimate standard error of position over best SNP 

as: 

• 95% C.I = position of best SNP ±1.96*se(x_bar)

 
( )∑

=

−=
n

i
ii xx

n
xse

1

2
214

1)(



 

0

2

4

6

8

10

12

14

16

0 20000000 40000000 60000000 80000000 100000000 120000000

Position (bp)

F-
va

lu
e

full
split 1
split 2

x1

x2

Confidence intervals



 

0

2

4

6

8

10

12

14

16

0 20000000 40000000 60000000 80000000 100000000 120000000

Position (bp)

F-
va

lu
e

full
split 1
split 2

x1

x2

95% C.I

Confidence intervals



Mapping QTL using LD

• Association testing with single marker 
regression

• Accounting for population structure
• LD mapping with haplotypes 
• The identical by descent (IBD) 

approach
• Combined linkage-linkage 

disequilibrium mapping



Population structure

• Simple model we have used assumes 
all animals are equally (un) related.

• Unlikely to be the case.  
• Multiple offspring per sire, breeds or 

strains all create population structure.  
• If we don’t account for this, false 

positives!



Population structure

• Simple example 
– a sire has many progeny in the population.  
– the sire has a high estimated breeding value 
– a rare allele at a random marker is homozygous in 

the sire (aa)
– Then sub-population of his progeny have higher 

frequency of a than the rest of the population.
– As the sires’ estimated breeding value is high, his 

progeny will also have higher than average 
estimated breeding values.  

– If we don’t account for relationship between 
progeny and sire the rare allele will appear to 
have a (perhaps significant) positive effect.



• Can account for these relationships by 
extending our model…..

• Where 
– u is a vector of polygenic effect in the model with a 

covariance structure u~N(0,Aσa
2)

– A is the average relationship matrix built from the 
pedigree of the population

– Z is a design matrix allocating animals to records.  

Population structure

eZuX'1y n +++= gμ



• Can account for these relationships by 
extending our model…..

• Solutions (λ=σe
2/σa

2 ):

Population structure

eZuX'1y n +++= gμ
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• An example A matrix……..

Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3

Pedigree



Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3

Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 Animal 6
Animal 1 1
Animal 2 0 1
Animal 3 0 0 1
Animal 4 0.5 0.5 0 1
Animal 5 0.5 0.5 0 0.5 1
Animal 6 0.5 0 0.5 0.25 0.25 1

Pedigree

• An example A matrix……..



Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3

Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 Animal 6
Animal 1 1
Animal 2 0 1
Animal 3 0 0 1
Animal 4 0.5 0.5 0 1
Animal 5 0.5 0.5 0 0.5 1
Animal 6 0.5 0 0.5 0.25 0.25 1

Pedigree

• An example A matrix……..



Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3

Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 Animal 6
Animal 1 1
Animal 2 0 1
Animal 3 0 0 1
Animal 4 0.5 0.5 0 1
Animal 5 0.5 0.5 0 0.5 1
Animal 6 0.5 0 0.5 0.25 0.25 1

Pedigree

• An example A matrix……..



Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3

Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 Animal 6
Animal 1 1
Animal 2 0 1
Animal 3 0 0 1
Animal 4 0.5 0.5 0 1
Animal 5 0.5 0.5 0 0.5 1
Animal 6 0.5 0 0.5 0.25 0.25 1

Pedigree

Half genes from mum, half from dad

• An example A matrix……..



Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3

Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 Animal 6
Animal 1 1
Animal 2 0 1
Animal 3 0 0 1
Animal 4 0.5 0.5 0 1
Animal 5 0.5 0.5 0 0.5 1
Animal 6 0.5 0 0.5 0.25 0.25 1

Pedigree

• An example A matrix……..



Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3

Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 Animal 6
Animal 1 1
Animal 2 0 1
Animal 3 0 0 1
Animal 4 0.5 0.5 0 1
Animal 5 0.5 0.5 0 0.5 1
Animal 6 0.5 0 0.5 0.25 0.25 1

Pedigree

Animals 4 and 5 are full sibs

• An example A matrix……..



Animal Sire Dam
1 0 0
2 0 0
3 0 0
4 1 2
5 1 2
6 1 3

Animal 1 Animal 2 Animal 3 Animal 4 Animal 5 Animal 6
Animal 1 1
Animal 2 0 1
Animal 3 0 0 1
Animal 4 0.5 0.5 0 1
Animal 5 0.5 0.5 0 0.5 1
Animal 6 0.5 0 0.5 0.25 0.25 1

Pedigree

Animals 6 is a half sib of 4 and 5

• An example A matrix……..



• Example

Population structure

eXμ1y n ++= g

Animal Sire Dam Phenotype SNP allele SNP allele 
1 0 0 10.1 1 2
2 0 0 2.2 2 2
3 0 0 2.31 2 2
4 1 2 6.57 1 2
5 1 2 6.06 1 2
6 1 3 6.21 1 2



• Example

Population structure

eXμ1y n ++= g

X

Animal Sire Dam Phenotype SNP allele SNP allele 
1 0 0 10.1 1 2
2 0 0 2.2 2 2
3 0 0 2.31 2 2
4 1 2 6.57 1 2
5 1 2 6.06 1 2
6 1 3 6.21 1 2
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• Example

Population structure
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• Example

Population structure

Animal Sire Dam Phenotype SNP allele SNP allele 
1 0 0 6.51 1 1
2 0 0 2.2 2 2
3 0 0 2.31 2 2
4 1 2 4.72 1 2
5 1 2 5.02 1 2
6 3 2 2.93 2 2

eZuX'1y n +++= gμ

λ=0.33



• Example

Population structure

Animal Sire Dam Phenotype SNP allele SNP allele 
1 0 0 6.51 1 1
2 0 0 2.2 2 2
3 0 0 2.31 2 2
4 1 2 4.72 1 2
5 1 2 5.02 1 2
6 3 2 2.93 2 2
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• Example

Population structure
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1 0 0 10.1 1 2
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Population structure

• Example of importance of accounting for 
population structure…….

– 365 Angus cattle genotyped for 10,000 SNPs
– polygenic and environmental effects were 

simulated for each animal
– No QTL fitted!
– Effect of each SNP tested using three models

• SNP only
• SNP and sire
• SNP and full pedigree



Population structure

 Significance level Analysis model 

p<0.005 p<0.001 p<0.0005 

Expected type I errors 40 8 4 

1.  Full pedigree model 39 (SD=14) 9 (SD=5) 4 (SD=3) 

2.  Sire pedigree model 

 

46* (SD=21) 11* (SD=7) 6* (SD=5.5) 

3.  No pedigree model  68** (SD=31) 18** (SD=11) 10** (SD=7) 

4.  Selected 27% - full 

pedigree 

 
 54** (SD=18) 12** (SD=6) 7** (SD=4) 

 

Number of false positives……….



Population structure

• Problem when we do not have history of the 
population

• Solution – use the average relationship 
across all markers as the A matrix 
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Mapping QTL using LD

• Association testing with single marker 
regression

• Accounting for population structure
• LD mapping with haplotypes 
• The identical by descent (IBD) 

approach
• Combined linkage-linkage 

disequilibrium mapping



LD mapping with haplotypes

• Power of association study depends on LD 
between markers and QTL

• One way to increase LD between QTL alleles 
and markers is to use haplotypes of markers 
rather than a single marker

• 1_Q single marker (1 is the allele of the 
marker)

• 1_1_Q_2_1 Haplotype of markers



LD mapping with haplotypes

• Value of haplotypes depends on LD 
between haplotype and QTL
– If we find two identical haplotypes from the 

population, what is the probability they 
carry the same QTL allele?

– If probability is high, high level of LD 
between haplotype and QTL



LD mapping with haplotypes

• If we find two identical haplotypes from 
the population, what is the probability 
they carry the same QTL allele?

• Haplotypes identical either because 
chromosome segments from same 
common ancestor 





1 1 1 2

Marker Haplotype



1 1 1  Q 2

Marker Haplotype



LD mapping with haplotypes

• If we find two identical haplotypes from 
the population, what is the probability 
they carry the same QTL allele?

• Haplotypes identical either because 
chromosome segments from same 
common ancestor 

• Or because of chance recombination…….



1  1  1     1 
Sire 

2  2  2     2 

Chance recombination produces the same haplotype…..



1  1  1     1 
Sire 

2  2  2     2 
Formation of gamete

Chance recombination produces the same haplotype…..



1  1  1     1 
Sire 

2  2  2     2 

1  1  1     2 Progeny 

Chance recombination produces the same haplotype…..



1  1  1     1 
Sire 

2  2  2     2 

1  1  1     2 Progeny 

1  1  1     2 

Chance recombination produces the same haplotype…..



1  1  1  q 1 
Sire 

2  2  2  q 2 

1  1  1  q 2 Progeny 

1  1  1 Q 2 

Chance recombination produces the same haplotype…..



Proportion of QTL variance explained by 
surrounding markers
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LD mapping with haplotypes

• If we find two identical haplotypes from the 
population, what is the probability they carry 
the same QTL allele?

• Haplotypes identical either because 
chromosome segments from same common 
ancestor 

• Or because of chance recombination…….
• With more markers in haplotype, the chance 

of creating the same haplotype by 
recombination becomes small



LD mapping with haplotypes

• Model ?

• Where g is now a vector of haplotype effects 
dimensions (number of haplotypes observed x 
1)

• And X allocates records to haplotyes

eZuXg'1y n +++= μ



LD mapping with haplotypes

• Example (eg after using PHASE to infer 
haplotype)

• X

Animal Paternal haplotype Maternal haplotype
1 1 1
2 1 2
3 2 3
4 5 4
5 3 2



Haplotype
1 2 3 4 5

1 2 0 0 0 0
2 1 1 0 0 0

Animal 3 0 1 1 0 0
4 0 0 0 1 1
5 0 1 1 0 0

• Example (eg after using PHASE to infer 
haplotype)

• X

LD mapping with haplotypes

Animal Paternal haplotype Maternal haplotype
1 1 1
2 1 2
3 2 3
4 5 4
5 3 2



LD mapping with haplotypes

• Fit haplotypes as random effects
– g ~ N(0,σh

2)
– Some haplotypes will be rare, very few observations
– Fitting the haplotype effect as random regresses the 

effects back to account for the lack of information
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LD mapping with haplotypes

• Fit haplotypes as random effects
– g ~ N(0,σh

2)
– Some haplotypes will be rare, very few observations
– Fitting the haplotype effect as random regresses the 

effects back to account for the lack of information
– λh=σe

2/σh
2
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LD mapping with haplotypes
• There is a “cost” of using haplotypes instead 

of single markers
• With single markers only one effect to 

estimate, with haplotypes many effects
• Fewer observations per effect, lower accuracy 

of estimating each effect

 Proportion of 

QTL variance 

explained 

Maximum 

number of 

haplotypes 

Observed 

number of 

haplotypes 

Nearest marker 0.10 2 2 

Best marker 0.20 2 2 

2 Marker haplotypes 0.15 4 3.4 

4 Marker haplotypes 0.28 16 9.4 

6 Marker haplotypes 0.55 64 20.8 

 



Mapping QTL using LD

• Association testing with single marker 
regression

• Accounting for population structure
• LD mapping with haplotypes
• The identical by descent (IBD) 

approach
• Combined linkage-linkage 

disequilibrium mapping



The IBD approach

• Principle:
– Existence of LD implies small segments of 

chromosome in population which are 
descended from the same common ancestor 
(IBD).



The IBD approach

• Principle:
– Existence of LD implies small segments of 

chromosome in population which are 
descended from the same common ancestor 
(IBD).

– IBD chromosome segments will not only 
carry identical marker haplotypes; if there 
is a QTL within chromosome segment, IBD 
chromosome segments will also carry 
identical QTL alleles.



The IBD approach

• Principle:
– Existence of LD implies small segments of 

chromosome in population which are 
descended from the same common ancestor 
(IBD).

– IBD chromosome segments will not only 
carry identical marker haplotypes; if there 
is a QTL within chromosome segment, IBD 
chromosome segments will also carry 
identical QTL alleles.  

– If two animals carry chromosomes which 
are IBD at a QTL position, their phenotypes 
will be correlated.  



The IBD approach

• The model

• Where vpi and vmi are the effects of the 
paternal and maternal QTL alleles 
respectively 

• modelling the effect of the QTL directly 
rather than assuming a haplotype or 
marker is in LD with the QTL 

iiiii evmvpuy ++++= μ



The IBD approach

• Each animal has it’s own QTL alleles
• There is a probability that different QTL alleles 

are actually IBD
• This is captured in the IBD (G) matrix
• Elements gij is the probability that QTL allele i 

and j are IBD. 
• This probability is inferred from marker 

haplotypes
• Dimensions (2*number of animals * 

2*number of animals)
• u~(0,Aσa

2), v~(0,Gσv
2), e~ ~(0,Iσe

2)



The IBD approach

• Building IBD matrix from marker 
haplotypes
–Consider three haplotypes drawn 

from population at random (P is 
putative QTL position)
• A   112P112
• B   212P112
• C   222P222

–P(IBD at QTL A,B) >P(IBD at QTL 
B,C), as longer identical haplotype



The IBD approach

• Building IBD matrix from marker 
haplotypes
– Parameters which determine IBD 

coefficients are 
• extent of LD
• length of haplotype and 
• number of markers in the haplotype



The IBD approach

• Building IBD matrix from marker 
haplotypes

• Algorithm of Meuwissen and Goddard 
(2001)
–deterministically predicts IBD 

coefficients at putative QTL positions 
from marker haplotypes



The IBD approach

• Building IBD matrix from marker 
haplotypes

• Algorithm of Meuwissen and Goddard 
(2001)
–deterministically predicts IBD 

coefficients between two marker 
haplotypes using
• number of markers flanking QTL position 

which are identical by state
• probability identical by chance ~ marker 

homozygosity
• extent of LD based on length of 

haplotype, effective population size



The IBD approach

• Building IBD matrix from marker 
haplotypes
– An example with Ne = 100
– 6 markers in 10cM, putative QTL position in 

centre  M_M_M_Q_M_M_M
– Sample four haplotypes from the population
– 112112,  112112,  122112,   222122
– IBD matrix is:

112112 112112 122112 222122
112112 1
112112 0.82 1
122112 0.63 0.63 1
222122 0.49 0.49 0.56 1



• A two stage approach for linkage 
disequilibrium mapping

1. For each putative QTL position, IBD or G
matrix.  IBD matrix has elements 
gij=Prob(QTL alleles i and j are identical by 
descent or IBD)

2.  For each position considered in step 1, 
construct the linear model to estimate QTL 
variances and other parameters, test for 
presence of QTL    

The IBD approach



The IBD approach

• The model

• u~(0,Aσa
2), v~(0,Gσv

2), e~ ~(0,Iσe
2)

iiiii evmvpuy ++++= μ



The IBD approach

• Use variance component estimation 
procedures to find the 
– Estimate of σu

2

– Estimate of σv
2

– Estimate of σe
2

– Which maximise the Log likelihood (LogL) 
of the data given these parameters

– Eg. ASREML



The IBD approach

• How do we test if the QTL is 
significant or not?

• Fit the model with no QTL:

• Plot   -2*(LogL QTL fitted - LogL
QTL not fitted) against position

iii euy ++= μ



The IBD approach
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The IBD approach

• How do we test if the QTL is 
significant or not?

• Fit the model with no QTL:

• Plot   -2*(LogL QTL fitted - LogL
QTL not fitted) against position

• Is distributed as a  χ2
1, αwhere α

is the desired significance level 
• at α=0.05 is 3.84) 

iii euy ++= μ



Linkage mapping in complex pedigrees
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The IBD approach

• Confidence interval
Drop of 2 of test statistic from maximum 
point



Comparison of approaches

• Zhao et al. (2007) compared power and 
precision of QTL mapping with single marker 
regression, haplotypes and IBD approach 

• They found in simulated data that single 
marker regression and the IBD approach had 
similar power and precision

• Calus et al. (2007) found that haplotypes gave 
slightly greater accuracy than single markers, 
and that the IBD approach gave much higher 
accuracies at low marker densities

• Hayes et al. (2007) tried to use real data, and 
results indicated 6 marker haplotypes were 
better than single marker regression

• Level of LD, simulation assumptions??



Mapping QTL using LD

• Association testing with single marker 
regression

• Accounting for population structure
• LD mapping with haplotypes 
• The Identical by descent (IBD) 

approach
• Combined linkage-linkage 

disequilibrium mapping



Combined LD-LA mapping

• Extent of LD very variable
• LD can exist between loci on different 

chromosomes!!
• Combine LD and linkage information to 

filter spurious peaks



Combined LD-LA mapping
• Consider a half sib design

– LD information from sire haplotypes, 
maternal hapotypes of progeny

– Linkage information from paternal 
haplotypes of progeny

• IBD matrix:

– a = LD (Meuwissen and Goddard 2001)
– b = linkage

SH MHP PHP
SH [a] [a] [b]
MHP [a] [a] [b]
PHP [b] [b] [b]



Combined LD-LA mapping
• In linkage analysis (LA) consider founder 

alleles (sires, dams) to be unrelated, eg…..



Sire 1211, 1212
Dam 1222, 1211
Progeny 1211, 1222



Sire Dam Progeny
Pat Mat Pat Mat Pat Mat

Sire Pat 1
Mat 0 1

Dam Pat 0 0 1
Mat 0 0 0 1

Progeny Pat 1 0 0 0 1

Mat 0 0 1 0 0 1

LA

Sire 1211, 1212
Dam 1222, 1211
Progeny 1211, 1222



Sire Dam Progeny
Pat Mat Pat Mat Pat Mat

Sire Pat 1
Mat 0 1

Dam Pat 0 0 1
Mat 0 0 0 1

Progeny Pat 1 0 0 0 1

Mat 0 0 1 0 0 1

LA

Sire Dam
Pat Mat Pat Mat

Sire Pat 1
Mat 0.8 1

Dam Pat 0.5 0.5 1
Mat 0.9 0.5 0.5 1

Sire 1211, 1212
Dam 1222, 1211
Progeny 1211, 1222

LD



Sire Dam Progeny
Pat Mat Pat Mat Pat Mat

Sire Pat 1
Mat 0 1

Dam Pat 0 0 1
Mat 0 0 0 1

Progeny Pat 1 0 0 0 1

Mat 0 0 1 0 0 1

LA

Sire Dam
Pat Mat Pat Mat

Sire Pat 1
Mat 0.8 1

Dam Pat 0.5 0.5 1
Mat 0.9 0.5 0.5 1

LDLA    
Sire Dam Progeny

Pat Mat Pat Mat Pat Mat

Sire Pat 1

Mat 0.8 1

Dam Pat 0.5 0.5 1

Mat 0.9 0.5 0.5 1

Progeny Pat 1 0.8 0.5 0.9 1

Mat 0.5 0.5 1 0.5 0.8 1

Sire 1211, 1212
Dam 1222, 1211
Progeny 1211, 1222

LD



Combined LD-LA mapping

• Example of twinning QTL in Norwegian 
dairy cattle (Meuwissen et al. 2002)

A B

C

LD LA

LD-LA



Combined LD-LA mapping

• How much information does LD add to 
the analysis?
– Depends on marker spacing and extent of LD
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Combined LD-LA mapping
• Can we use half-sib families for LD 

analysis?

• Yes
– Dam haplotypes provide LD information 



Combined LD-LA mapping

• Number of progeny required to position 
QTL to a 95% C.I. 3cM interval with 
different designs:

• Of course depends on assumptions 
about extent of LD  ~ determined by Ne

Population Number of genotyped progeny 
required to map QTL to 3cM 
95% C.I. 

F2 7407
Full sib 12685
Commercial (LDLA) 900
 



Combined LD-LA mapping

• Can we use half-sib families for LD 
analysis?
– + selective genotyping ?

• Yes
Figure 1. Precision of QTL position estimates, 

15 sire design
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Combined LD-LA mapping

• LDLA analysis + selective genotyping = 
Cheap? experiment able to position QTL 
with high degree of precision 



Combined LD-LA mapping

• Which families to pick for LD analysis?
– Those with maximum within half sib family 

variance
– Maximise chance of QTL segregating
– Another ‘selective genotyping’ strategy  
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Power of a mapping design (30 
sires mated to 60 dams in a half 
sib design and 10 progeny per 
dam, no recombination in males) 
to 

A. detect QTL and 
B. Position QTL within 3cM of       
the true QTL position, 

for QTL explaining different 
proportions of the phenotypic 
variance.  The 30 half sib 
families were either randomly 
selected (RAND) from the 
breeding population for 
genotyping, or the half sib 
families with the largest within 
half sib family variance for the 
trait (MAXV) were selected.



LD mapping of QTL

• Take home points
– LD mapping uses information on historical 

recombinants to narrow QTL C.I.
– Power depends on extent of LD and marker 

density
• Knowledge of extent of LD critical

– Some suggestion that single marker 
regression a good approach, with high marker 
density?

– IBD approach allows extension to capture LA 
information
• v. important with lower marker density >> power
• filter spurious peaks

– Half sib designs ideal for LDLA mapping 
• Use LD info from dam haplotypes
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